Turnaround Time: Within 1 day
CPT Code:

82670

Test Type: 0.8 mL Serum
Stability Time:

Temperature

Period

Room temperature

14 days

Refrigerated

14 days

Frozen

14 days

Freeze/thaw cycles

Stable x3

Reference Range:


Adult male: 7.6-42.6 pg/mL

Adult female:

- Follicular: 12.5-166.0 pg/mL

- Ovulation: 85.8-498.0 pg/mL

- Luteal: 43.8-211.0 pg/mL

- Postmenopausal: <6.0-54.7 pg/mL

Pregnancy: First trimester: 215.0 to >4300.0 pg/mL

Children (1 to 10 years):

- Male: 0.0-20.0 pg/mL

- Female: 6.0-27.0 pg/mL

Note: The results displayed above were obtained with the Roche ECLIA methodology.

Overview:

This estradiol assay is designed for the investigation of fertility of women of reproductive age and for the support of in vitro fertilization.

E2 levels in children, postmenopausal women, and men are much lower than in women of reproductive age. The increased sensitivity and specificity that are achieved by LC/MS-MS are the more appropriate choice for these clinical situations than the electrochemiluminescence immunoassay (ECLIA) method.1,2 See Estradiol, Sensitive, LC/MS [140244]. LC/MS-MS offers superior analytical sensitivity, specificity and a larger dynamic range than immunoassays.1 The clinical applications benefiting from highly sensitive E2 measurement include the assessment of congenital defects in sex steroid metabolism and disorders of puberty. This sensitive assay also has application in the evaluation of estrogen deficiency in men and menopausal women, fracture risk assessment in these populations, and increasingly, in therapeutic drug monitoring of low-dose female hormone replacement therapy or antiestrogen treatment.

Estradiol levels tend to fluctuate dramatically during the perimenopausal transition. There is significant overlap of the expected range in menopausal women with values observed during normal menstrual cycles. Estradiol results obtained with different assay methods cannot be used interchangeably in serial testing. To monitor a patient's serial results, it is best to ensure that the same methodology is used each time the test is performed.

As with all test containing monoclonal mouse antibodies, erroneous findings may be obtained from samples taken from patients who have been treated with monoclonal mouse antibodies or who have received them for diagnostic purposes. In rare cases, interference due to extremely high titers of antibodies to streptavidin and ruthenium can occur. The test contains additives, which minimize these effects.

Due to the risk of cross-reactivity, this estradiol assay should not be used when monitoring estradiol levels in patients treated with fulvestrant (Faslodex®). An alternate method that is not subject to interference by this drug such as the Estradiol, Sensitive, LC/MS [140244] should be used to measure estradiol levels in patients treated with fulvestrant.

Estradiol is responsible for the regulation of the estrous and menstrual female reproductive cycles and for the development and maintenance of female secondary sex characteristics.3,4 Estradiol plays a key role in germ cell maturation and numerous other, non-gender-specific processes, including growth, bone metabolism, nervous system maturation, and endothelial responsiveness. Estrogens are crucial for the normal development and maintenance of the breasts and the uterus.5 However, excessive estrogen levels can promote cell proliferation and may increase the risk of developing breast and uterine cancer as well as uterine endometriosis.5

The three major naturally occurring estrogens in women are estrone (E1), estradiol (E2), and estriol (E3). E2 is the predominant estrogen during reproductive years, both in terms of absolute serum levels as well as in terms of estrogenic activity.3 During menopause, a dramatic drop in E2 production leaves estrone as the predominant circulating estrogen. Estriol is the main pregnancy estrogen, but it does not play a significant role in nonpregnant women or men.3 The concentration of E2 in men is much lower than in women of reproductive age. All estrogens are synthesized from androgen precursors by the enzyme aromatase.3,5 Aromatase converts the androgenic substrates androstenedione, testosterone, and 16-hydroxytestosterone to the corresponding estrogens: estrone, estradiol, and estriol.5 E2 is produced primarily in ovaries and testes by aromatization of testosterone.3 A lesser amount of E2 is produced in the adrenal glands and some peripheral sites, most notably adipose tissue. Most of the circulating estrone is derived from peripheral aromatization of androstenedione (mainly in the adrenal gland). E2 and E1 can be converted to each other, and both are inactivated via hydroxylation and conjugation. E2 demonstrates two to five times the biological potency of E1.3

The importance of E2 testing and the need for reliable and accurate estradiol measurements throughout the analytic range are emphasized in several recent publications.6-8 LabCorp offers a sensitive estradiol by LC/MS (140244). Measurement of serum E2 serves an integral role in the assessment of reproductive function in females and in the assessment of infertility, oligomenorrhea, and menopausal status. E2 is commonly measured for monitoring ovulation induction, as well as during preparation for in vitro fertilization. Because of the relatively high serum concentrations of E2 in these patients, readily available automated immunoassay methods with modest sensitivity meet the clinical requirements.

Adult female. In premenopausal women, E2 levels, along with luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels, delineate the stage of the menstrual cycle.3 E2 levels are lowest during the early follicular phase and rise gradually. Two to three days before ovulation, estradiol levels start to increase much more rapidly to a peak just before ovulation. This dramatic increase in circulating E2 levels induces a surge in LH and FSH. E2 levels decline modestly during the ovulatory phase and then increase again gradually until the midpoint of the luteal phase and ultimately decline back to early follicular levels.

Assessment of E2 levels is useful for the evaluation of hypogonadism and oligomenorrhea in women. Decreased ovarian estrogen production is classified as hypergonadotropic or hypogonadotropic, depending on whether the disease is of gonadal or pituitary/hypothalamic origin.9-11 Measurement of gonadotropins (LH and FSH) is fundamental in differentiating these two low estradiol states. The main causes of primary gonadal failure (hypergonadotropic) are genetic (Turner syndrome, familial premature ovarian failure), autoimmune (autoimmune ovarian failure, autoimmune polyglandular endocrine failure syndrome type II), and toxic (related to chemotherapy or radiation therapy for malignant disease).

Low E2 with low or inappropriately "normal" LH and/or FSH in young adult females is consistent with hypogonadotrophic hypogonadism.11-13 This can be caused by hypothalamic or pituitary failure due to conditions including multiple pituitary hormone deficiency and Kallmann syndrome. Diagnostic workup includes the measurement of E2, along with pituitary gonadotropins and prolactin and, possibly, imaging. This endocrine presentation can be caused by starvation, overexercise, severe physical or emotional stress, and drug/alcohol abuse. While early studies suggested that E2 levels could be used to predict ovarian reserve in women of reproductive age undergoing assisted reproduction procedures, more recent studies have found the marker less useful.14 Estradiol measurement is useful in assessing the status of ovulation induction in women with hypogonadotropic hypogonadism,15 and for the prediction and prevention of ovarian hyperstimulation syndrome in patients undergoing assisted reproduction.16

Normal or high E2 with irregular or absent menstrual periods is suggestive of possible polycystic ovarian syndrome, androgen producing tumors, or estrogen producing tumors. In these cases, measurement of total and bioavailable androstenedione, dehydroepiandrosterone (sulfate), and sex hormone-binding globulin can aid in differential diagnosis.

The main site of estrogen biosynthesis in the nonpregnant premenopausal woman is the ovarian granulosa cells; however, the adipose tissue becomes a major source of circulating estradiol in postmenopausal women.3 After menopause, androstenedione, secreted by the adrenal gland, is converted into&

Collection Details:

Patient Preparation:

Patients should be cautioned to stop biotin consumption at least 72 hours prior to the collection of a sample.

Collection Instructions:

This test may exhibit interference when sample is collected from a person who is consuming a supplement with a high dose of biotin (also termed as vitamin B7 or B8, vitamin H, or coenzyme R). It is recommended to ask all patients who may be indicated for this test about biotin supplementation. Patients should be cautioned to stop biotin consumption at least 72 hours prior to the collection of a sample.

Red-top tube or gel-barrier tube.

If a red-top tube is used, transfer separated serum to a plastic transport tube.

Room temperature.